UNIVERSITY OF COLORADO BOULDER
DEPARTMENT OF APPLIED MATHEMATICS

Steepest Descent vs the Conjugate
Gradient Method: An Adventure in Linear
System Solvers

Lauren Marsh

Serena DiLeonardo

@ University of Colorado Boulder
Spring 2021

Abstract:
In this paper, solvers for linear systems will be investigated. The main goals of
this project are to:
1. Derive conjugate gradient method

2. Compare conjugate gradient (CG) vs steepest descent for a collection of
problems for symmetric matrices

3. Describe and compare the performance of two alternatives to the CG,
specifically Biconjugate Gradient (BiCG) and Generalized Minimal Resid-
ual Method (GMRES)

4. Test numerical examples to explore cases where these methods are most
and least efficient, as well as the cases where they fail

These goals are approached with various techniques from numerical analysis.
Our comparisons will delve into the number of iterations and time required to

solve a linear system, as well as their sensitivity to changes in input. Through
this analysis, we can come to conclusions as to which methods perform best for
different types of linear systems.

1. Introduction and Background

The method of conjugate gradients was developed by Magnus Hestenes and Eduard Stiefel,
published in 1952 as an iterative method for solving sparse systems of linear equations
[1]. This computationally powerful iterative method is able to solve an N-dimensional
symmetric positive definite system of linear equations in exactly N steps, and is used across
fields of optimization, machine learning, and image processing [2]. The derivation however
is not immensely straightforward, as numerous approaches with varying notation can be
found in different research papers and textbooks. All derivations do however rely on the
same crux — the orthogonality of the residuals and conjugacy of the search directions [3].

1.1. Krylov Subspaces

Krylov subspace methods consist of algorithms which solve problems such as linear systems,
eigenvalue problems, and matrix equations. Generally, Krylov subspaces consist of the
iterative schemes whose mth iterate x;, satisfies:

Xm € Xo +Km(A; rO)

for k=1,2,3,...and K,;,(A, ry) = spaniry, Aro, ..., A™ 1o} denotes the mth Krylov subspace
generated by matrix A and residual ry [4]. Krylov subspaces have a few interesting properties:

Kr (A) b),AKr (A) b) € Kr+1(A» b)

Krylov subspaces are used in algorithms for approximating solutions to high-dimensional
linear algebra problems largely due to their property that the matrix A is not needed explicitly,
just the ability to operate on A and a given vector v [4]. Thus, avoiding matrix-matrix
operations, these iterative methods are able to multiply the matrix by vectors and work with
the resulting vectors.

2. Derivation of the Conjugate Gradient Method

The method of conjugate gradients (CG) is used to solve a system of linear equations with

the general form:
Ax=Db

where A is a symmetric 7 x n matrix such that A” = A, and x (unknown) and b (known) are
n x 1 column vectors.

2.1. Orthogonality and conjugate vectors

Let’s take a moment to review what it means for two vectors to be conjugate. By definition,
vectors v and w are conjugate with respect to matrix A if:

v Aw=0

Note that since A is assumed to be symmetric and positive definite, this is equivalent to the
inner product with respect to A:

< w>s=< Av,w>=< v, ATw>=<v,Aw >

Thus v and w are mutually conjugate with respect to A if and only if they are orthogonal with
respect to this inner product. Note that vectors being conjugate with respect to A may also
be called A—orthogonal [5]. Since CG is actually a special case of the method of Conjugate
Directions, we will first explore this a bit more in depth.

2.2. The Method of Conjugate Directions

A conjugate direction method generates conjugate directions applied to a positive definite
matrix. Simply, modifications are made on steepest descent such that directions are con-
jugate to previous search directions, thereby in a way keeping track of previous directions.
The Q-conjugacy of search directions and the error term is equivalent to minimizing ||e||¢
along the search direction, where e; = ey + lzl « jd;. The next step minimizes ||e||o along the
i=0

next search direction, while remaining Q—jorthogonal to all previous search directions. The
residual r; indicates how far our approximation is from the correct value of b, i.e. r; = b—Qx;,
and can be interpreted as the direction of steepest descent. Since r; = —Qe;, the residual
remains orthogonal to all old search directions as well, i.e. a new linearly independent
search direction is produced at each step unless the residual is zero, which would imply the
problem is already solved. [1, 2]

Consider the following set of Q—orthogonal direction vectors:
{do, dy, ..., dn-1}

where Q is a positive definite matrix size n x n. This set is linearly independent, since Q is
positive definite implying that dl.TQd,- > 0. Note that this is true since for some «;,

aodp+...+ardr=0 = a; =0
The overarching goal is to solve the quadratic minimization problem
1
min-x"Qx—-bTx
x 2

for x* where Qx* = b. This solution can be written as a linear combination of the set
{do,dy,...,dy_1} as:
x*=aodp+ardi+...+a,-1d,—1

We can compute the terms {ag, a1, ..., ®;,—1} with the following relation:

_djQx" _ dib
dl'Qd; dlQd;

i

Note that a; is expressed in terms of the known vector b, rather than the unknown vector
solution x*. Then, the solution x* can be expressed as:

n-1 4Tp
=y i
i=0 d; Qd,

* .
i

The conjugate direction method makes use of these properties, and applies an iterative
technique to find a unique solution x* to Qx = b. The residual r; indicates how far our
approximation is from the correct value of b, i.e. r; = b— Qx;, and can be interpreted as the
direction of steepest descent. Taking a set of nonzero Q—orthogonal vectors {dy, d1, ..., dp—1},
we can construct an iterative scheme:

Xk+1 = X+ apdy
g di

_d{Qdk
x*, in exactly n steps = x, = x*. [1, 2]

where aj = so that gx = Qxj—b. This scheme will converge to the solution of Qx = b,

2.3. The Method of Conjugate Gradients

At each step of CG, a new search direction is chosen such that it is Q—orthogonal to all
previous search directions, as is the case for conjugate direction methods. The addition is
that the direction is updated at each step. In this procedure, each new residual is orthogonal
to all previous residuals and search directions, and each new search direction is constructed
from the residual to be Q—orthogonal to all previous residuals and search directions.

For some starting point xg, we set dyp = —go = b— Qxp. The iterative procedure is similar to
that of conjugate directions:

Xjer1 = Xg + ardy

g} dy
dl Qdy

where ay = — and gr = Qxi — b, as before. The following step is where CG differs:

8k+1=~8k+1+Pkdr diks1=—8k+1+ Prdi
which implies B = %
attained. At each step, CG requires one matrix-vector product and two inner products. The
rate of convergence for the CG algorithm depends on the eigenvalue distribution, i.e. if A
has tightly clustered eigenvalues which are bounded away from zero, then the literature
states that CG will converge quickly [1].

. Iterations continue until a desired size of residual error is

3. Alternative Linear Solvers

3.1. Steepest Descent

The basic idea of steepest descent (SD) is to take repeated steps in the opposite direction of
the gradient (or approximate gradient) of the function at the current point (i.e. the direction
of steepest descent) until a predefined residual value is reached. As a refresher, error is a
vector that indicates how far we are from the solution x, while the residual indicates how far
we are from the correct value of b. Thus steepest descent works by choosing point after point
that is closer to the final solution using the direction of steepest descent (i.e. the negative of
the gradient) [5]. The general implementation is as follows:

1. Pick a starting point xg

2. Move in the direction of steepest descent

3. Calculate the gradient

4. Set the residual as the negative gradient i.e. steepest downward slope
5. Move in the opposite direction

6. Continue until a specified tolerance is met

In order to find the direction of steepest descent, this is approached as a minimization
problem. For the equation:

1
flx) = ExTAx—bx+c

we have the gradient
1
Vf(x) = 5(A+AT)x—b: Ax—Db

by symmetry of A. Thus the negative gradient of the next iterate is set as the residual:

=Vf(xit1) =b—Axiy1 =T1in1

with the ith error e; = x; — x and residual r; = b— Ax; = — Ae;. The next iterate is given by:
rlri
Xit] =X+ ri
1 l rlTArl 1

which ensures orthogonality to the previous iterate [5]. As mentioned, where CG differs
primarily is here - CG uses all previous directions to build the next direction, making the
next search direction A-orthogonal (i.e. conjugate) to all previous directions.

3.2. Biconjugate Gradient

The previous methods (SD and CG) can only be used for SPD matrices. Ideally, there would
also exist a method that worked similarly but could be used on non-symmetric systems.
This is where biconjugate gradient (BiCG) comes in!

The way BiCG works is by generating fwo CG-like sequences of vectors, one based on a
system with the original coefficient matrix A, and one on A”. Instead of orthogonalizing each
sequence, they are made mutually orthogonal, i.e. bi-orthogonal. The price of replacing the
original orthogonal sequence of residuals by two mutually orthogonal sequences is that the
process no longer providing a minimization. This can lead to extremely erratic convergence
behavior, as the minimization of residuals is not guaranteed [6].

In other words, BiCG simultaneously solves Ax = b and A’ x = b. This provides two update
sequences of residuals:

ri=ri-1— a;Apj

o o T ~
ri=ris1—a;iA pi
and two search directions:
pi=ri-1+Bi-1pi-1

pi="ri-1+Bi-1Pi-1

with A
AT T
Ii_yTi-1 I, Ti
al = A7“)ﬁl = AT
P; i Ti-1

If it is the case where matrix A is symmetric, then r; = 7; , p; = p; , and CG would produce
the same result at half the computational cost.

3.3. Generalized Minimum Residual Method

As with BiCG, the generalized minimum residual method (GMRES) can be used for matrices
that are not SPD. It also happens to be that, like BiCG is a generalized method of CG, GMRES
is a generalized method of MINRES, i.e. the minimum residual method. MINRES is used
to solve linear systems for symmetric but not necessarily positive definite matrices. Both
MINRES and GMRES work by minimizing the 2-norm of the residual by solving a least
squares problem, where GMRES is for non-symmetric systems and MINRES uses a 3-term
recurrence relation similar to CG [5]. In other words, the 2-norm of the residual r;,, = b— Ax,,
at step m satisfies:
lIrmll2 < 11b— Azl12V z € X0 + Kin (A, To)

Both of these methods are projection methods, like all Krylov subspace methods. The
original problem is projected onto a [Krylov] subspace of lower dimension in which the
solution of the residual minimization problem can be easily found by solving either a linear
system or a least squares problem, and the least squares problem can be efficiently solved
via QR factorization. For numerical stability reasons, it is best to project onto a subspace if
an orthonormal basis for the subspace is known. In order to construct an orthonormal basis

for the Krylov subspace, the Gram-Schmidt process is efficiently implemented. For MINRES,
this implementation is referred to as the Lanczos process, and for GMRES it is referred to the
Arnoldi process [5]. Note that if A= A*, then the upper Hessenberg matrix H,, = H,,, = Ty, is
a tridiagonal matrix and the Arnoldi process becomes the Lanczos process (with cheaper
storage). Successive residuals of GMRES are still orthogonal, however the complexity and
required storage space increases linearly with each iteration. A common fix to this storage
issue is to incorporate restarts into the algorithm, i.e. after m < n steps taking that result and
setting it as the initial guess of the algorithm, and starting over. This is commonly referred to
as GMRES(m).

4. Numerical Examples

In order to analyze and compare the performance of Conjugate Gradient to other methods,
we developed a problem set that demonstrated both the strengths and weaknesses of the
method. Each problem involved solving the system Ax = b where the initial guess xy was set
to be the zero vector and b was set as an appropriately sized vector of ones. These were kept
consistent across examples in order to reduce the variance across examples. The tolerance
used for the methods was set as 1 x 1075, corresponding to the norm of the residual, and the
maximum number of iterations (INmax) was set at 100. While A was different in each test
case, it always maintained the property of being SPD.

4.1. lll-conditioned Matrices (Hilbert Systems)

To analyze the worst case behavior regarding numerical instability, we used a system where A
was a Hilbert matrix. Hilbert matrices are symmetric and positive definite, with elements de-
fined by H;j = w+1 fori,j=1,2,3,..., n. They are also canonical examples of ill-conditioned
matrices, meaning that they have large condition numbers and are nearly singular. We chose
to experiment with Hilbert matrices for these reasons as well as for their common use as
test cases for numerical methods, as they are a classic example for demonstrating round-off

error difficulties.

Figure 1: Norm of the residual per iteration for solving a 5 x 5 Hilbert system

Residuals vs Iteration (Hs,s)

—— Conjugate Gradient
107 4 Steepest Descent

Morm of Residual
-
=

T T T
10° 10t 10°
Iteration (n)

Figure 2: Convergence Analysis for ill-conditioned systems (Hilbert systems)

Iteration Cenvergence fer Hilbert systems Final Residual Convergence for Hilbert systems

107
v

Norm of Final Residual
5

—— Conjugate Gradient Ui —— Conjugate Gradient
Steepest Descent Steepest Descent

100 10!
Size of Hilbert matrix Size of Hilbert matrix

(a) Total number of iterations required to (b) Norm of the final residual after solving m x
solve m x m Hilbert system m Hilbert system

The behavior expected from this test was that steepest descent would converge at a slower
rate than CG. This is demonstrated in the plots from both Figure 1 and Figure 2. As expected,
for every metric we measured CG significantly outperformed steepest descent. In Figure 2b,
steepest descent reaches the maximum number of iterations even for small Hilbert matrices.
CG continues to converge to the tolerance, but Figure 2a shows that CG begins to break
down and show erratic behavior for Hilbert matrices over 10 x 10.

Figure 3: Run-time analysis for solving m x m Hilbert matrix systems (ill-conditioned)

Timing Comparison for Solving Hilbert Matrix Systems

— G
steepest_descent

— bi CG

—— gmres

1ot
Size of Hilbert Matrix

The next metric we investigated was run-time. Steepest descent was still expected to
run the slowest, with biCG running twice as long as CG and GMRES running the fastest
for general systems. This behavior is reflected in the timing results for the four methods in
solving Hilbert systems of various sizes. Steepest descent timing reflects a relatively constant
rate in this case due to the fact that the algorithm was reaching maximum iterations every
time, meaning it was running the same number of iterations for each increasing size of the
Hilbert system.

4.2. Moderately lll-conditioned Systems (Pascal Systems)

Following the Hilbert testing for CG, we performed tests for Pascal systems, which are good
examples of moderately ill-conditioned matrices where the binomial coefficients make up
its elements. We aimed to investigate whether CG broke down at the same places that it did
for Hilbert systems, and whether steepest descent would perform any better.

Figure 4: Norm of the residual per iteration for solving a 5 x 5 Pascal system

Residuals vs Iteration (Psys)

100 4

107t 4

1077

103 A

1074 1

MNorm of Residual

0

107° 4

—— Conjugate Gradient

w07 4 Steepest Descent

hivg 10t 1
Iteration (n)

Figure 5: Convergence Analysis for moderately ill-conditioned systems (Pascal systems)

Iteration Convergence for Pascal systems Final Residual Convergence for Pascal systems

10° —— Conjugate Gradient
10¢ Steepest Descent N
100 1

Number of Iterations
5
Norm of Final Residual
=1

b=
=1

—— Conjugate Gradient 1071
Steepest Descent

0 10t
Size of Pascal matrix Size of Pascal matrix

(a) Total number of iterations required to (b) Norm of the final residual after solving m x
solve m x m Pascal system m Pascal system

The behavior for steepest descent vs CG in solving Pascal systems seemed to match the
behavior seen when solving Hilbert systems. Through analyzing the norm of the final
residual, steepest descent appears to perform better than CG for larger Pascal systems.
However, this behavior can be a result of steepest descent not truly converging to tolerance,
but rather reaching the maximum iterations.

4.3. Sparse Matrix Systems

Previous literature and research suggested that CG was used commonly in situations with
large sparse matrix systems. Using a matrix from the SuiteSparse Matrix Library [7], we were
able to test on larger and larger subsets of the test matrix we chose, which all happened to be
SPD. This was due to the nature of the construction of the matrix. This allowed us to test the
claim of CG’s superior performance in solving large spare linear systems when compared
with other methods.

Figure 6: Norm of the residual per iteration for solving a single 5 x 5 Sparse matrix system.

Residuals vs Iteration (5x5 sparse matrix)

1

100 4

=

107%

100

Norm of Residual

10-°

10-10 4

—— Caonjugate Gradient

-1z 4
10 Steepest Descent

T T T
10° 10t 10#
Iteration (n)

Figure 7: Convergence Analysis for Sparse Matrix Systems

Iteration Convergence for Sparse Matrices Final Residual Convergence for Sparse Matrices

Morm of Final Residual
g

— Conjugate Gradient —— Conjugate Gradient
Steepest Descent Steepest Descent

10 10t
Size of Sparse matrix Size of Sparse matrix

(a) Total number of iterations required to (b) Norm of the final residual after solving m x
solve m x m Sparse matrix system. m Sparse matrix system.

It was surprising that steepest descent continued to perform poorly even with the sparse
matrix system. In Figures 6 and 7 it appears that the performance of steepest descent did
not improve much from the results for ill-conditioned systems, even though working with
sparse matrices was expected to improve the performance for any method. Looking just

10

at CG, there is significant improvement in the performance compared to the Hilbert and
Pascal systems.

Figure 8: Run-time analysis for solving 10 x 10 Sparse Matrix Systems.

Timing Comparison for Solving Sparse Matrix Systems

— G
steepest_descent

— bi CG

—— gmres

10 102
Size of Sparse Matrix

The run-time analysis for all four methods in solving sparse systems showed an interesting
result. Steepest descent continued being the slowest, and biCG went consistently twice as
slow as CG for each size, which was exactly what we anticipated after reading the literature.
However, there was a point after the sparse matrix reached 10 x 10 where GMRES started to
perform worse than both CG (and biCG). This supported the claim we found in previous
research arguing that CG should be chosen over other methods for large sparse matrix
systems when considering run-time.

4.4. Matrix Systems with Clustered Eigenvalues

The final optimized situation for the CG method that we investigated was for solving matrix
systems with clustered eigenvalues. To test this case, we created random SPD matrices with
a method in which we were able to predetermine the eigenvalues.

The method for creating the random SPD system with predetermined eigenvalues involved
starting with a diagonal matrix that contained the desired eigenvalues on the diagonal. Let
this matrix be called D, with eigenvalues Ay, A»,...,A1,,. The random element of the final
matrix is introduced by creating a random orthogonal matrix Q. The final matrix A is
constructed as:

A=Q"D,Q 1)

Because Q is an othogonal matrix, A has the same eigenvalues of D). The random orthog-
onal matrix is created using a built-in library, scipy.stats.ortho_group. [8]

11

Figure 9: Norm of the residual per iteration for solving a single 10 x 10 matrix system with
clustered eigenvalues

Residuals vs Iteration (10x10 matrix of clustered eigenvalues)

1 4
10 — —— Conjugate Gradient

Steepest Descent
10—1 4

103

105

107

Morm of Residual

107

1001 4

10-12 4

T T T
10° 1t 107
Iteration (n)

Figure 10: Norm of the final residual of CG after solving a 10 x 10 matrix system with varying
degrees of eigenvalue clustering

Final Residual Convergence for Matrices with Clustered Eigenvalues

1011 4

10-12 4

1|}—13 4

Morm of Final Residual

10 o

1071

T T T
10 107! 10°
Spacing of Cluster

In this plot, a value more to the left corresponds to stronger clustering of eigenvalues in
our matrix A. Extending the maximum iteration bound for steepest descent allowed it to
converge to tolerance with this system. Clustered eigenvalues improved performance for
both CG and steepest descent in the 10 x 10 system in Figure 9 compared with the Hilbert,
Pascal, and Sparse system performances. However, when testing varying degrees of cluster
spacing, there was negligible change in the performance for steepest descent. Therefore
we concluded that this relative improvement in performance was most likely due to the
construction of A rather than its property of clustered eigenvalues.

12

CG’s behavior in Figure 10 shows that the closer the eigenvalue cluster is, the smaller
the norm of the final residual, for cluster spacing less than 1. As the spacing gets larger,
the matrix is no longer considered as having the property of clustered eigenvalues and its
behavior reflects the results of finding the solution to any arbitrary 10 x 10 SPD matrix.

Figure 11: Run-time analysis for solving 10 x 10 matrix systems with varying degrees of
eigenvalue clustering

Timing Comparison for Matrix Systems with Clustered Eigenvalues

— G
steepest_descent

— biCG

— gmres

Time {s)

Cluster Spacing

The timing results show that although CG does return a smaller final residual, it’s timing is
not improved drastically enough for it to be faster than GMRES.

4.5. Sensitivity Analysis

An important investigation was testing CG for sensitivity to variations in input. This testing
was performed using the previous test matrices and adding fixed perturbations, then looking
at the final residual results.

Figure 12: Plot demonstrating the sensitivity of CG to systematic variations in input, where
each matrix entry is perturbed by the same amount

Sensitivity to Variation in Input for Sparse Matrices

1011

10712 4

Maorm of Final Residual

10-1F]

T T T T T T T T T
-1.00 -0.75 -050 -0.25 0.00 0.25 0.50 075 100
Perturbation frem original input

13

Figure 12 shows the results of testing CG by introducing a simulated systematic error to the
matrix A. The norm of the final residual didn’t vary drastically in response to perturbations.
This shows that CG is not sensitive to variations in input if symmetry is maintained. However,
further experiments where we added perturbations to single entries in the matrix which
altered the symmetric property did not affect its ability to converge to a solution for larger
(10 x 10) matrices, though larger perturbations resulted in larger residual errors. For small
matrices, CG was also not extremely sensitive to perturbations affecting its property of
symmetry. This shows that CG, in general, will not break down in response to error in input.
Therefore, special care should be taken in using the algorithm, and an understanding of the
input and any output error should be accounted for independently.

5. Discussion and Conclusion

In practice, these methods are used with preconditioning. This consists of replacement
of the original system Ax = b with an equivalent system A% = b for which our desired
algorithm would experience better convergence [4]. It is likely that the preconditioner then
would involve A being well-conditioned or having clustered eigenvalues. Note that only
SPD preconditioners could be used with CG and MINRES. It is also worth noting that the
application of preconditioning can lead to varying convergence behavior depending on
which side the preconditioner is applied to. Specifically, right preconditioning preserves the
2-norm of the residual which is minimized, while left preconditioning minimizes the the
preconditioned residual [4].

This project served to investigate linear system solvers including steepest descent, conju-
gate gradient, biconjugate gradient, and the generalized minimum residual method. Multi-
ple test cases were developed to understand the optimal use case for CG. The methods were
tested for ill-conditioned systems (Hilbert systems), moderately ill-conditioned systems
(Pascal systems), sparse matrix systems, and matrix systems with clustered eigenvalues. In
each case, CG performed better and faster than steepest descent, where steepest descent
often struggled to converge within tolerance with the given maximum iteration bound. In
all but one case, GMRES worked best with respect to run-time performance. In the case of
large sparse matrix systems, CG and biCG’s run-time performance was better than GMRES.
In general, CG showed an ability to converge within tolerance even when input or symmetry
was affected. We conclude that from these results, CG would be the best method for solving
large sparse linear systems and GMRES would be the preferred method for other general
systems.

14

Appendices

A. Data Table

0 1 2 3 4 5 6 7 8 9
0 16668.2 1.0 1.0 0.0 0.0 0.0 0.0 00 00 0.0
1 1.0 583382 1.0 2.0 0.0 2.0 0.0 00 00 0.0
2 1.0 10 42 0.0 0.0 3.0 0.0 00 30 0.0
£ 0.0 20 0.0 41676.2 0.0 2.0 0.0 40 00 0.0
4 0.0 0.0 00 0.0 33340.2 0.0 0.0 00 00 50
5 0.0 20 30 2.0 0.0 25014.2 0.0 00 30 0.0
6 0.0 0.0 00 0.0 0.0 0.0 16676.2 00 00 0.0
7 0.0 0.0 00 40 0.0 0.0 00 583522 00 0.0
8 0.0 00 30 0.0 0.0 3.0 0.0 00 122 0.0
9 0.0 0.0 0.0 0.0 50 0.0 0.0 00 00 416902

This matrixis a 10 x 10 subset from the "barrier Hessian from convex QP (CUTEr)" matrix
found on the SuiteSparse Matrix Library [7]. The original matrix is 50,000 x 50,000 with
349,968 nonzero values, equating to a relative matrix density of 1.399872 x 10~7. It is real
and SPD.

B. Relevant Code

B.1. Packages Utilized

numpy, numpy.linalg, scipy.sparse, scipy.sparse.linalg, scipy.io, time, matplotlib.pyplot

B.2. Linear Solver Function

The following code details the linear solver function containing the steepest descent and
conjugate gradient methods[9], as well as calls to the built in bicg and gmres algorithms
from the scipy.sparse.linalg library.

def linear_solver (A, b, x0, solvername, tol=1e-6, Nmax=1000):
check if A is square
if not is_square(A):
print ("A_not_nxn")

15

return

if solvername == "conjugate_gradient":
conjugate gradient method
matrix needs to be: nxn
check if A is symmetric positive definite
if not is_sympd(A):
print ("Matrix_needs_to_be_symmetric_positive_definite.")
return

initialize values

=b

=0 # number of iterations

np.zeros ((A.shape[1l], 1))

_steps = [x]

_steps = [1/2 x x.transpose() @ A @ x — x.transpose () @ b]
rr = [LA.norm(r)]

#
r
k
X
X
y
e

while err[-1] > tol and k <= Nmax:

if k ==
p=r

else:
gamma = —(p.transpose() @ A @ r)/(p.transpose() @ A @ p)
p =T + gamma * p

alpha = (p.transpose() @ r) / (p.transpose() @ A @ p)

x = x + alpha = p

r =1 — alpha * (A @ p)

k = k+1

x_steps.append(x)

y_steps.append(1/2 * x.transpose() @ A @ x — x.transpose() @ b)

err .append (LA.norm(r))

if k == Nmax:
print ("Reached_max jiterations")
return x, x_steps, y_steps, err
return x, Xx_steps, y_steps, err

elif solvername == "steepest_descent":

mien

steepest descent method
matrix needs to be: nxn

min

16

check if A is symmetric positive definite

if not is_sympd(A):
print ("Matrix_needs_to_be_symmetric_positive_definite.")
return

initialize values

x = x0

x_steps = [Xx]

y_steps = [1/2 % x.transpose() @ A @ x — x.transpose () @ b]
r=b-A@x

k = 0 # number of iterations

err = [LA.norm(r)]

while err[-1] > tol and k <= Nmax:

p=r

q=A@p

alpha = (p.transpose() @ r) / (p.transpose() @ q)
x = x + alpha * p

r =1 — alpha * q

update vars

k=k+1

x_steps.append (x)

y_steps.append(1/2 * x.transpose() @ A @ x — x.transpose () @ b)
err.append (LA.norm(r))

if k == Nmax:
print ("Reached_max iterations")
return x, Xx_steps, y_steps, err
return x, x_steps, y_steps, err

elif solvername == "biconjugate_gradient":
use built-in scipy function for biconjugate gradient
matrix needs to be: nxn

return bicg(A, b, x0, tol=tol, maxiter=Nmax) # returns x and info

elif solvername == "gmres":

use built-in scipy function for biconjugate gradient
matrix needs to be: nxn
return gmres(A, b, x0, tol=tol, maxiter=Nmax)

else:

print ("Please_enter_valid_solver_name.")
return

17

B.3. Function for Creating Random Matrix Systems with
Predetermined Eigenvalues

The function below details the creation of a random matrix with given eigenvalues contained
in the vector lam. [8]

def eigcluster (lam):
n = len (lam)
Q = scipy.stats.ortho_group.rvs(n)
return (Q.T @ np.diag(lam) @ Q)

Example of construction for 10 x 10 matrix with eigenvalues clustered away from the origin:

m = 10 # size of matrix
clus = 50 # large eigenval to create cluster around —- cluster center
spac = 0.25 # dist from cluster center

lam = np.concatenate ((np.linspace (1, m, m-3), np.linspace (clus-spac, clus+spac,

define system

A = eigcluster (lam)

b = np.ones((m, 1)) # define b as vector of ones
x0 = np.zeros((m, 1)) # define initial guess (x0)

18

3).

References

(1]

(2]

Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for
solving linear systems. Vol. 49. 1. NBS Washington, DC, 1952.

Muhammad Ali Raza Anjum. “One-Minute Derivation of The Conjugate Gradient
Algorithm”. In: CoRR abs/1608.08691 (2016). URL:
http://arxiv.org/abs/1608.08691.

T.A. Straeter. On the Extension of the Davidon-Broyden Class of Rank One,
Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space with
Application to Optimal Control Problems. North Carolina State University at Raleigh,
1971. URL: https://books.google.com/books?7id=1-bkGwAACAAJ.

Michele Benzi. Preconditioning Techniques for Large Linear Systems Part II: Krylov
Subspace Methods.

David Chin-Lung Fong and Michael A Saunders. “CG versus MINRES: An empirical
comparison”. In: SQU Journal for Science 17.1 (2012), pp. 44-62.

Dianne P O’Leary. “The block conjugate gradient algorithm and related methods”. In:
Linear algebra and its applications 29 (1980), pp. 293-322.

Timothy A. Davis and Yifan Hu. “The university of Florida sparse matrix collection”. In:
ACM Transactions on Mathematical Software 38.1 (2011), pp. 1-25. DOI:
10.1145/2049662.2049663.

Rick Wicklin on The DO Loop. Generate a random matrix with specified eigenvalues.
Mar. 2012. URL: https://blogs.sas.com/content/iml1/2012/03/30/geneate-a-
random-matrix-with-specified-eigenvalues.html.

Sophia Yang. Descent method-Steepest descent and conjugate gradient in Python. Dec.
2020. URL: https://medium.com/dsc-msit/descent-method-steepest-descent-
and-conjugate-gradient-in-python-8baad4c4aac’b.

19

